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Abstract
Representation learning and feature aggregation
are usually the two key intermediate steps in
natural language processing. Despite deep neural
networks have shown strong performance in the
text classification task, they are unable to learn
adaptive structure features automatically and
lack of a method for fully utilizing the extrac-
ted features. In this paper, we propose a novel
architecture that dynamically routes hierarchical
structure feature to attentive capsule, named HAC.
Specifically, we first adopt intermediate informa-
tion of a well-designed deep dilated CNN to form
hierarchical structure features. Different levels
of structure representations are corresponding to
various linguistic units such as word, phrase and
clause, respectively. Furthermore, we design a
capsule module using dynamic routing and equip it
with an attention mechanism. The attentive capsule
implements an effective aggregation strategy for
feature clustering and selection. Extensive results
on eleven benchmark datasets demonstrate that the
proposed model obtains competitive performance
against several state-of-the-art baselines. Our code
is available at https://github.com/zhengwsh/HAC.

1 Introduction
Text classification is one of the fundamental tasks in natural
language processing (NLP). In recent years, many successful
deep learning models have been widely applied to this task.
Mainstream deep learning methods usually contain two im-
portant components: representation learning and feature ag-
gregation. Given a sentence or document in the classification
task, the longstanding challenges for deep learning models
are (1) how to enumerate task-relevant structure representa-
tions of the sequence automatically via representation learn-
ing and (2) how to leverage latent label-oriented abstractions
of each extracted structure feature via feature aggregation.

According to different representation learning approaches,
existing models for text classification can be roughly categor-
ized into four types. Bag-of-words representation models
represent the text sequence by taking the average of different
words [Grave et al., 2017], but unable to consider word order.

Sequence representation models consider word order using
convolutional neural network [Kim, 2014] or recurrent neural
network [Chung et al., 2014], but do not involve structure
information. Structure representation models, such as tree-
structured LSTM [Tai et al., 2015], utilize pre-specified pars-
ing trees to take structure information into account. Attention-
based models [Yang et al., 2016] use attention mechanism to
build representations by weighting input words differently.

Currently, the structure features in most structure repres-
entation models are either provided as input from pre-defined
parsers or learned end-to-end from feature detectors, such
as CNN and RNN. However, these representation methods
are not automatical and unable to learn adaptive text struc-
ture sufficiently. Focusing on CNN encoder, the traditional
pipeline is using convolutional layers with geometrically
fixed filters to extract spatial features (n-gram structure) in the
last level of output, whatever for shallow or deep encoders.
Then a following pooling or attention layer is utilized to ag-
gregate prominent features for downstream tasks. The main
limitations include that little structure information is expli-
citly learned from the encoder, and the aggregation strategies
perform selection directly over structure representations,
which can’t fully utilize their latent semantic abstractions.

More recently, a promising work named capsule net-
work [Sabour et al., 2017] provides novel viewpoint of
feature aggregation. The dynamic routing process learns part-
whole relation between adjacent capsule layers. However, ex-
isting capsule networks determine the category either accord-
ing to the vector length of capsules or just flatten all capsules
to a fixed-length vector for the classifier, which lost potential
and diverse information embedded in different capsules.

In this paper, to address the aforementioned challenges
and issues, we propose a novel model (dubbed as HAC) that
dynamically route Hierarchical structure feature to Attentive
Capsule for text classification. We employ a deep dilated
CNN to extract hierarchical structure features. Different from
conventional CNNs, we denote the intermediate feature maps
at each level of deep dilated CNN as hierarchical structure
representations. Dilated convolutions exponentially grow the
receptive field from upstream layers to downstream layers,
which can effectively form various linguistic units of input
text, such as word, phrase, clause, sentence and other specific
levels. To aggregate and fully utilize information within hier-
archical structure features, we design a capsule module using
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dynamic routing and equip it with an attention mechanism.
During the dynamic routing process, information is embed-
ded into capsules and iteratively distilled into task-relevant
categories, which can be viewed as information distillation
and feature clustering. Considering that target capsules con-
tain different viewpoints and contribute unequally to the text
category, we build an attention mechanism upon the aggrega-
tion of target capsules to adaptively select significant parts for
classification. Extensive experiments on several benchmarks
demonstrate the effectiveness of the proposed architecture,
surpassing the state-of-the-art methods remarkably.

Specifically, our contributions are of three-folds:

• We propose a novel HAC architecture for improving the
structure representation learning and feature aggregation
within the text classification task, by dynamically rout-
ing hierarchical structure feature to attentive capsule.

• We design an effective CNN-based module to automat-
ically extract hierarchical representations of text struc-
ture, and a variant capsule-based module equipped with
an attention mechanism to make full use of information.

• We conduct extensive experiments on both small and
large datasets, covering a wide range of text classifica-
tion tasks. Experiments demonstrate that our proposed
approach outperforms a number of competitive baselines
and achieve a few state-of-the-art results.

2 Related Work
Related work can be divided into two threads and we briefly
review each of these areas in this section.

2.1 Structure Representation
Structure representation is an attractive representation
method for sentence modeling. In the classification task, ex-
isting works can be concluded into three types. Hierarchical
models include [Zhou et al., 2015], combining CNN and
RNN to learn structure representation. Tree-based models
include [Tai et al., 2015], involving pre-defined parsers to
construct sentence tree structure. Reinforcement learning
models include [Tianyang et al., 2018], using policy network
and classification network to discover optimized structures.

However, previous models only select the final level
output of encoder (CNN/RNN) as sentence representations
and pass it to the following classifier. To utilize multi-scale
structure features within the sentence, [Zhao et al., 2015;
Wang et al., 2018b] use intermediate information obtained
during the encoding process. [Zhao et al., 2015] concatenates
different representations of the sentences at different levels
of abstractions, by performing a pooling operation over each
level of recurrent and recursive networks. [Wang et al.,
2018b] introduces a densely connected CNN and an attention
mechanism to choose each level of CNN features.

2.2 Feature Aggregation
Feature aggregation aims at aggregating the extracted
features into a fixed-length vector as sentence represent-
ation. Bag-of-word (BoW) [Grave et al., 2017] strategy
represents the sentence by taking the average of embedding

vectors. Max-pooling is employed to extract the most salient
feature within each feature map in CNNs [Kim, 2014;
Zheng et al., 2017] or within each hidden state in RNNs.
Dynamic k-max pooling [Kalchbrenner et al., 2014] strategy
selects the k most active features to prevent missing valuable
information. Attention mechanism becomes popular by
calculating attention distribution and performing a weighted
average on the output features of CNN/RNN layer [Yang et
al., 2016], for classification [Chen et al., 2018] and transfer
learning [Shaoan et al., 2018].

Recently, capsule network with dynamic routing is pro-
posed to improve the representational limitations of CNNs
and RNNs. Capsule network is first applied in image [Sa-
bour et al., 2017], and recently in text [Zhao et al., 2018;
Gong et al., 2018]. Unlike pooling operation, the capsule
network collects the whole information after transformation,
instead of discarding unrelated information.

3 Method
The overall architecture of our model is depicted in Figure 1.
Following sections elaborate the components and workflow.

3.1 Word Embedding Layer
Consider a text sentence S = w1 , ...,wN with length N .
The goal of this layer is to represent each word in S with
a d -dimensional vector. The word embedding is a fixed
vector for each individual word, which is projected from the
pre-trained embedding lookup-table. The output of this layer
is the sequence of word vectors X = [x1, ...,xN ] ∈ RN×d.

3.2 Context Representation Layer
The goal of this layer is to incorporate contextual information
into the representation of each input time step. Meanwhile,
the word vectors will be compressed into a lower dimension
for the following layers. We utilize a bi-directional Gated
Recurrent Unit (Bi-GRU) [Cho et al., 2014] to produce con-
textual representation ht of a word by concatenating forward

hidden state output
→
ht and backward hidden state output

←
ht.

→
ht =

−→
GRU (

→
ht−1,xt), (1)

←
ht =

←−
GRU (

←
ht+1,xt), (2)

ht = [
→
ht,
←
ht]. (3)

Thus, the output of Bi-GRU encoder are a sequence of
vectors H = [h1, ...,hN ] ∈ RN×d′

.

3.3 Deep Dilated Convolution Layer
This is one of the core layers within our model. The purpose
of this deep dilated convolution layer is to extract hierarchical
multi-granularity features as textual structure representation.

Unlike conventional CNN which apply convolution oper-
ation upon pre-trained word embeddings, our dilated CNN is
built upon Bi-GRU output vectors which contain contextual
information. For the first convolution block, we denote
U0 = H = [h1, ...,hN ] ∈ RN×d′

as the input representa-
tion matrix, where d′ is the input vector dimension. Similarly,
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Figure 1: (Better viewed in color) The overview of our proposed architecture HAC.

the outputs of each intermediate block and the final block can
be represented as Ul = [ul

1, ...,u
l
N ] ∈ RN×k(l ∈ [1, L]),

where L is the number of total convolution block and k is the
number of filters in each block.

Consider the l-th convolution block, let Wl ∈ Rk×w×k

(W1 ∈ Rk×1×d′
is the exception) be the filter matrix for

convolving w input vectors with k filter kernels. The trans-
formation between two adjacent blocks can be formulated as

Ul = f(Wl,Ul−1), (4)
where f is an affine function that sliding filters over the
w-length input window.

Specifically, ul
t ∈ Ul is produced by calculating

ul
t = ReLU(Wl

⊕
[ul−1

t+ir]
w−1
i=0 ), (5)

where [] is vector concatenation operator,
⊕

is convolution
operator and r is dilated rate. Rectified linear units (ReLU )
function is adopted for activation.

We use a dilation scheme whereby the dilation rates are
doubled every block up to a maximum rate 2L−2 and thus
the receptive fields are increased every block up to maximum
width (w−1)2L−1, which can be fine-tuned according to spe-
cific dataset. Notice that in the standard convolution, r = 1.

Dilation [Yu and Koltun, 2016] makes the receptive field
grow exponentially in terms of the depth of the networks, as
opposed to linearly. The receptive field can be computed by
(w−1)2l−1. Using larger dilation rate or larger filter size en-
able the output at each intermediate level to represent a wider
range of input, which can be regarded as a larger n-gram fea-
ture. Intuitively, variant size of n-gram features correspond-
ing to multi-granularity structure representation of the input
text sequence, where small n-gram match word/phrase-level
and large n-gram match clause/sentence-level in general.

Zero padding is used on either side of the convolution
layer’s input to ensure that the output features have the same
size as the input features. Finally, we extract hierarchical
feature maps U1,U2, ...,UL.

3.4 Dynamic Routing Capsule Layer
This is another core layer within our model. The goal of
this layer is to summarize the raw convolutional features
generated at the previous layer into several higher abstract
aspects. We propose a dynamic routing policy, a variant of
capsule network first proposed by [Sabour et al., 2017], to
implement this process for feature clustering. In this layer,
upstream row features and downstream abstract features are
both represented in capsules. Note that for each convolution
block, an unshared capsule layer is adopted to categorize
their output features, with regard to a specific linguistic unit.

As shown in Figure 2, we take one convolution
block’s output features for example and formally intro-
duce the dynamic routing process in detail. Recall that
Ul = [ul

1, ...,u
l
i, ...,u

l
N ] ∈ RN×k denotes the output of

l-th convolution block. Each ul represents a n-gram feature
generated by k filter maps and we call it as source capsule.
And we call Vl = [vl

1, ...,v
l
j , ...,v

l
M ] ∈ RM×dv as target

capsules, where M denotes the target capsule number and dv
denotes the target capsule dimension. We aim at routing Ul

to Vl, as an information distillation and feature clustering
process. For simplicity of notation, we omit the superscript
l in the following formulas.

Consider ui in source capsule layer and vj in target
capsule layer, a routing vector mi→j is computed to indicate
the information to be transferred from ui to vj

mi→j = cijûj|i. (6)

Prediction vector (vote) ûj|i indicates the viewpoint of
raw feature to be transferred and is computed from ui by
multiplying a transformation matrix Wj

ûj|i = Wjui. (7)

Coupling coefficients cij indicates the proportion of
prediction vector to be transferred and is determined by a
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Figure 2: (Better viewed in color) Dynamic routing process

“routing softmax” function

cij =
exp(bij)∑
k exp(bik)

, (8)

where bij represents the log prior probability that capsule
i should be coupled to capsule j and is calculated by the
iterative dynamic routing process.

Then, the target capsule vj is produced with two steps. A
collection of incoming routing vectors is calculated firstly

sj =

N∑
i=1

mi→j , (9)

and then be activated by applying the squash function

vj =
sj
‖sj‖

. (10)

The squash function enlarges small vectors and shrinks
large vectors to unit vectors, which makes the dynamic
routing process more stable and the information interaction
more efficient.

Between two capsule layers, we use an iterative dynamic
routing policy to compute the capsule output by calculating
an intermediate value cij . Within the “routing softmax”
function, bij is initialized with zero and updated with an
agreement scale aij . The agreement aij is calculated by a
scale product between capsules in two layers

aij = vjûj|i, (11)

bij ← bij + aij . (12)

By default, the target capsule number M is the number
of text categories plus an orphan category. The orphan
category inspired by [Sabour et al., 2017] can capture the
“background” information such as stop words and the words
that are unrelated to the task. Introducing the orphan category

Algorithm 1 Dynamic Routing Algorithm
Input: Source capsules u1, ...,uN ; Maximum iterations R
Output: Target capsules v1, ...,vM

1: Initialize bij = 0 for all i and j.
2: for r = 1 to R do
3: Compute cij for all i and j by Eq. (8)
4: Update all target capsules vj by Eq. (10)
5: Update bij for all i and j by Eq. (12)
6: end for
7: return v1, ...,vj , ...,vM

Dataset c l ml N Test Type

MR 2 22 63 10662 CV review
SST-1 5 19 56 11855 2210 sentiment
SST-2 2 19 56 9613 1821 sentiment
SUBJ 2 25 132 10000 CV subjectivity
TREC 6 10 37 5952 500 question
CR 2 20 106 3775 CV review
MPQA 2 3 44 10606 CV opinion

AG 4 36 199 127.6k 7.6k news
DBP 14 52 1498 630k 70k ontology
Yelp.P 2 153 1221 598k 38k review
Yelp.F 5 154 1221 700k 50k review

Table 1: Statistics of eleven datasets after tokenization (top half are
small datasets and bottom half are large datasets). c: number of
classes. l: average sentence length. ml: maximum sentence length.
N : dataset size. Test: test set size (CV means no standard train/test
split and thus nested 10-fold cross validation is used).

reduces the interference for normal categories and makes the
dynamic routing more effective.

Our dynamic routing algorithm is summarized in Al-
gorithm 1. Each separated target capsule layer yields
Vl = [vl

1, ...,v
l
j , ...,v

l
M ] for the l-th convolutional feature

block. We concatenate target capsules outputs into a united
V = [V1,V2, ...]. (13)

and pass it to the attentive aggregation layer.

3.5 Attentive Aggregation Layer
The goal of this layer is producing a fixed-length represent-
ation vector o by taking all target capsules as input. For each
target capsule vi ∈ Rdv in V, we compute an attention score
αi for it, which indicates its importance and contribution to
the classification task,

αi =
exp(ei)∑
k exp(ek)

, (14)

ei = a(q,vi), (15)

a(q, vi) = qTvi, (16)
where q is a task-specific trainable pattern vector and k
denotes the number of capsules in the capsule pool V.

Finally, we obtain a fix-length aggregation vector o by
calculating the weighted sum over all target capsules for text
representation and pass it to the downstream classifier.

o =
∑

i
αivi (17)
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Model MR SST-1 SST-2 Subj TREC CR MPQA

RNNs (no transfer) Bi-LSTM 79.3 46.2 83.2 90.5 89.6 82.1 -
Tree-LSTM 80.7 50.1 85.7 91.3 91.8 83.2 -

CNNs (no transfer) MC-CNN 81.1 47.4 88.1 93.2 92.2 85.0 89.4
MVCNN - 49.6 89.4 93.9 - - -

Others (no transfer) CapsuleB 82.3 - 86.8 93.8 92.8 85.1 -
Self-ATT 80.1 47.2 - 92.5 - - -

Ours (no transfer) HAC 83.3 49.1 88.2 95.1 95.0 86.4 89.8

Transfer Approaches BoW+ELMo 79.7 48.7 86.3 94.3 93.4 85.1 89.6
InferSent 81.1 - 84.6 92.4 88.2 86.3 90.2
USET +CNN 81.2 - 86.7 93.6 98.1 87.5 87.3

Ours HAC+ELMo 85.0 49.7 89.4 95.9 96.8 88.9 91.2

Table 2: Experimental result (test set accuracy) comparison of our model and baselines on seven small text classification benchmarks.

3.6 Prediction Layer
The purpose of this layer is to estimate the probability
distribution p(y|S), where y is the classification targets. We
feed the fixed-length aggregation vector o to a multi-layer
perceptron (MLP) classifier using softmax activation.

p(y|S) = p(y|o) = softmax(MLP(o)) (18)

4 Experiments
4.1 Datasets
Literature usually tests their model on either small datasets
or large datasets, which could not provide extensive results.
Here, we test our model on both. For small datasets, seven
widely-studied datasets [Kim, 2014] include: movie reviews
(MR), Stanford Sentiment Treebank (SST-1 and SST-2),
subjectivity classification (SUBJ), question dataset (TREC),
customer review (CR), opinion polarity (MPQA). For large
datasets, four widely-studied datasets [Zhang et al., 2015]
include: AG’s news corpus (AG), DBPedia ontology (DBP),
Yelp reviews (Yelp.P and Yelp.F).

The detailed statistics are listed in Table 1. These datasets
cover a wide range of text classification tasks, with varying
numbers of documents and varying document length. Fol-
lowing the evaluation scheme in existing literatures, for MR,
CR, Subj, MPQA, we use nested 10-fold cross-validation, for
TREC, AG, DBP, Yelp.P, Yelp.F, 10-fold cross-validation,
and for SST-1, SST-2, standard validation.

4.2 Implementation Details
Input Embedding
We use two versions of embedding for fair comparisons. The
first one is 300-dimensional GloVe [Pennington et al., 2014]
word vectors trained on Common Crawl corpus. Another is
1024-dimensional word vectors extracted from ELMo [Peters
et al., 2018] pre-trained on Word Benchmark corpus. For
both small and large datasets, GloVe embedding is adopted.
Besides, ELMo embedding is adopted on small datasets for
fairly comparing with results in existing transfer learning
literatures. Word embeddings are fixed during training.

Model Configuration
We are interested in our model’s robustness across a diverse
set of tasks. To this end, if not mentioned otherwise, we
use the same network parameters in all classification tasks
without specific fine-tuning. In detail, we set the hidden state
dimension of Bi-GRU to be 100 for each direction. We adopt
5 dilated convolutional blocks, with filter window size 2 and
filter number 100. We set the target capsule dimension to be
50, and use 3 iterations of routing for all datasets. The MLP
classifier has a hidden layer of size 50 using ReLU activation.

Training Protocol
The training objective is to minimize the cross-entropy loss.
Dropout regularization is employed on the input embedding
layer, with the dropout rate 0.5. We don’t impose L2 regular-
ization at each layer. We train our model’s parameters using
gradient-based optimizer Adam, with an initial learning rate
1e-3. We halve the learning rate if the dev accuracy doesn’t
increase in 3 training epochs, and set the minimum rate to be
1e-4. We conduct mini-batch with size 8 for small datasets,
and size 128 for large datasets. The training process lasts at
most 30 epochs on all the datasets.

4.3 Competitors
To comprehensively evaluate the performance of our pro-
posed approach, we give a variety of baseline methods and
state-of-the-art models for comparison, listed in different
genres (RNNs variants, CNNs variants, and others).

For small datasets, the competitors include: Bi-
LSTM [Cho et al., 2014], tree-structured LSTM (Tree-
LSTM) [Tai et al., 2015], multichannel CNN (MC-
CNN) [Kim, 2014], multichannel variable-size CNN
(MVCNN) [Yin and Schütze, 2015], capsule network
(CapsuleB) [Zhao et al., 2018], structured self-attentive
model (Self-ATT) [Lin et al., 2017]. Additionally, trans-
fer learning methods include bag-of-word with ELMo
(BoW+ELMo) [Perone et al., 2018], sentence repres-
entations from inference (InferSent) [Conneau et al.,
2017a], transformer-based universal sentence encoder
(USET +CNN) [Cer et al., 2018]. For large datasets, the
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Model AG DBP. Yelp.P Yelp.F

RNNs LSTM 86.1 98.6 94.7 52.5
Dis-LSTM 92.1 98.7 92.6 59.6

CNNs VD-CNN 91.3 98.7 95.7 64.7
DC-CNN 93.6 99.2 96.5 66.0

Others LEAM 92.5 99.0 95.3 64.1
WC-RE 92.8 98.9 96.4 64.9

Ours HAC 93.7 99.2 97.4 68.3

Table 3: Experimental result (test set accuracy) comparison of our
model and baselines on four large text classification benchmarks.

Models SST-2 Acc. AG Acc.

Full model 88.2 93.7
w/o intermediate features 86.5 92.8
w/o capsule routing 87.6 93.3
w/o attentive aggregation 87.4 93.0

Table 4: Ablation study of our model on dataset SST-2 and AG.

competitors include: LSTM and its variant discriminative
LSTM (Dis-LSTM) [Yogatama et al., 2017], very deep CNN
(VD-CNN) [Conneau et al., 2017b], densely connected CNN
(DC-CNN) [Wang et al., 2018b], label-embedding attentive
model (LEAM) [Wang et al., 2018a], word-context region
embedding (WC-RE) [Qiao et al., 2018].

4.4 Main Results
Classification results show the strong generalization capabil-
ity of our model, across different datasets and different tasks.

Small Datasets Results
The results of small datasets are listed in Table 2. From the
results, we observe that our model achieves best classification
accuracy on 5 out of 7 benchmarks under the non-transfer
scheme, and 6 of 7 benchmarks under the transfer scheme.
Particularly, our model outperforms previous deep neural net-
work models with a large margin and beats advanced models
involving capsule or self-attention. Notice that our model
under the non-transfer scheme has surpassed some state-of-
the-art transfer learning approaches on several datasets.

Large Datasets Results
The results of large datasets are listed in Table 3. From the
results, we observe that our model achieves best classification
accuracy on all four benchmarks. Particularly, our model sig-
nificantly outperforms RNNs and other advanced approaches
on all datasets. While comparing with those deep and soph-
isticated CNNs, our model achieves analogical improvement,
especially for datasets with larger average word length.

4.5 Ablation Study
More investigations are conducted to study the independent
effect of each module in our proposed architecture. We
replace intermediate features with the final-layer feature,
capsule routing with max-pooling, attentive aggregation with
concatenation, respectively. Table 4 shows the accuracy on

Figure 3: Visualization of structure features and attentive capsules.
Type notation p is positive category, n is negative category and the
subscript implies corresponding layer.

the SST-2 (small dataset) test set and the AG (large dataset)
test set. We can observe that eliminating any of the proposed
modules would hurt the performance significantly. Ablation
results reveal the effectiveness of each proposed component
and the elaborate full architecture among different tasks.

4.6 Visualization
To intuitively understand our model, we visualize the extrac-
ted most salient structure feature and attention weight for
each target capsule. Figure 3 shows the visualization result
for a sentence sampled from SST-2 dataset. Red denotes the
target capsule attention weight according to Equation (14),
and blue denotes the source capsule coupling coefficient
towards current target capsule according to Equation (8). We
sort different levels of positive/negative categories from top
to down. Due to limited space, we omit orphan categories,
which always have small attention weights and unrelated
structure. From this figure, we can see that the detected most
salient text structure feature mostly represents a linguistic
unit and carries corresponding sentiment polarity to their tar-
get capsule. In addition, the aggregation mechanism is able
to select the informative target capsules containing strong
sentiment corresponding to the true label for classification.

5 Conclusion
In this paper, we propose a novel architecture that dynam-
ically route hierarchical structure feature to attentive capsule
for text classification. The main idea of the proposed model is
to adaptively form multi-granularity structure representations
of text and fully leverage the categorized abstract of features
with attention. Experiments on various datasets demonstrate
that the proposed approach outperforms competitors and
achieve several state-of-the-art results. Ablation and visual-
ization analyses also reveal the effectiveness of our model for
structure representation learning and feature aggregation.
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